Description
The Synchronized Crystal Oscillator is intended for use in the system, which requires multiple clocks in different nodes of the system to run synchronously in frequency without master clock along with SCC ensemble per 1138A. The Synchronized Crystal Oscillator is ideal for mission critical applications where optimization of system speed, bandwidth and redundancy is desired. SXO units are intended to be connected in the system as shown on Fig.1 to create a distributed oscillator. System nodes requiring synchronized clocks tap the signal off one of the synchronization buses, connecting individual SXO units.

Applications and Features
- Unlimited scalability/easily expandable
- Ideal for blade applications
- Provides a complete, system-wide clock redundancy solution
- High reliability systems with multiple synchronous clocks.
- Greatly improved system reliability due to redundancy and elimination of start-up problem
- Low Phase Noise and jitter
- No master clock, no PLL required for the system, no single point of failure
- No dynamic phase error
- Eliminates additive jitter degradation associated with clock distribution
- “Hot” – swappable
- Synchronize independent of power application sequence/No special power sequence required
- Improves Phase jitter at every node
- While in sync all units exhibit identical phase noise characteristics
- Low cost
- COTS/Dual use
Creating a Part Number

AN - A SXO X G - X

Package code
AN 8 pad 17x14 SMD

Operating Voltage
A 3.3 V ± 5%

Environmental
L Contains a level of lead that is in excess of RoHS directive and is not designed for reflow
R RoHS compliant

Frequency Stability, Overall, ppm
G ±50

Temperature Range, ºC
A 0 to 50
B 0 to 70
C -20 to 70
D -40 to 85
9 Customer Specific
Synchronized Crystal Oscillator, General Requirements

AN-ASXOXG-X Series

Drawing Specification

- **Electrical Connections**
 - Pin out #1 = Vcc (3.3V +/- 5%); #2 = Synch IN; #3 = Synch OUT; #4 = GND, Case; #5 = N/C, #6 = Contr OUT – DNC; #7 = GND; #8 = N/C

- **Environmental and Mechanical Characteristics**
 - **Operating temp. Range**
 - see part # table
 - **Mechanical Shock**
 - Per MIL-STD-202, Method 213, Cond. A
 - **Thermal Shock**
 - Per MIL-STD-883, Method 1011, Cond. A
 - **Vibration**
 - Per MIL-STD-883, Method 2007, Cond. A
 - **Hermetic Seal**
 - Leak rate less than 1x10^-8 atm.cc/s of helium, crystal only.
 - **Soldering conditions**
 - See MAX reflow profile below

357 Beloit Street, P.O. Box 457, Burlington, WI 53105-0457 U.S.A. Phone 262/763-3591 FAX 262/763-2881

Email: nelsales@nelfc.com www.nelfc.com
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>T_o</td>
<td>-40 to $+85$</td>
<td>ºC</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{st}</td>
<td>-50 to $+90$</td>
<td>ºC</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_{cc}</td>
<td>-0.5 to 3.6</td>
<td>V</td>
</tr>
<tr>
<td>Sync in</td>
<td>V_{cc}</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Parameters (4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symb</th>
<th>Conditions, Note</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Frequency, F_o</td>
<td>Fo</td>
<td>25</td>
<td>25</td>
<td>160</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_{cc}</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{cc}</td>
<td>$F = 100$ MHz</td>
<td>20</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Levels</td>
<td>V_{oh}</td>
<td>0.7 V_{cc}</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vol</td>
<td>V_{ol}</td>
<td>0.1 V_{cc}</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle (Symmetry)</td>
<td></td>
<td>At 50% swing</td>
<td>45/55</td>
<td>50/50</td>
<td>55/45</td>
<td>%</td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td>T_r/T_f</td>
<td>20 to 80, 80 to 20%</td>
<td>3.0</td>
<td>5.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Jitter, test output see note 3</td>
<td>J</td>
<td>Integrated from Phase Noise, 12 KHz to 20 MHz , RMS</td>
<td>0.1</td>
<td>0.2</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10Hz to 80KHz, RMS</td>
<td></td>
<td>0.5</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 KHz to 80 MHz</td>
<td></td>
<td>0.3</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>Sub-harmonics</td>
<td></td>
<td>none</td>
<td></td>
<td></td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td>Phase Noise $\varepsilon(\Delta f)$</td>
<td>100 MHz, test output</td>
<td>$@10$ Hz</td>
<td>-80</td>
<td>-110</td>
<td>-135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$@100$ Hz</td>
<td>-155</td>
<td>-155</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$@1$ KHz</td>
<td>-160</td>
<td>-160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$@10$ KHz</td>
<td>-160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$@100$ KHz</td>
<td>-160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$@>1$ MHz</td>
<td>-160</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synchronized Crystal Oscillator, General Requirements

AN-ASXOXG-X Series

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Delta F/F</th>
<th>Conditions</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Stability, individual unit</td>
<td>ΔF/F</td>
<td>Overall Initial Calibration Over temp 0 to 70 ºC -40 to 85 ºC Aging, 1st year 15 years Load, Vcc, shock, Vibration, reflow</td>
<td>±30</td>
<td>±10</td>
<td>±15</td>
</tr>
<tr>
<td>Frequency Stability in ensemble, up to 100 units</td>
<td>ΔF/F</td>
<td>Overall</td>
<td>±35</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Synchronization Range, individual unit</td>
<td>ΔF/F</td>
<td>Vsync in > 1.5 V pk-pk</td>
<td>±40 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of SXO per system</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>See note 1.</td>
</tr>
<tr>
<td>Settling Time, “hot-swap”, or powered up, powered down</td>
<td>Ts</td>
<td>After Vcc reaches 0.9 Vcc nom to plugged-in unit</td>
<td>10</td>
<td>50</td>
<td>ms</td>
</tr>
<tr>
<td>Sync out delay</td>
<td>Td</td>
<td></td>
<td>1</td>
<td>s</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Consult Factory
2. Though it appears that there’s very little margin of Sync range vs. Overall stability, following considerations should be taken into account:
 a. The temperature difference in the same system between the nodes is much smaller than operating temperature range, assumed not to be greater than 10ºC
 b. Frequency drift of different units caused by aging, Vcc variations and reflow goes in the same direction
 Therefore in real life the margin will increase by 10 – 15 ppm.
3. Specified phase noise and jitter is for individual units tested separately. Using an ensemble of synchronized clock modules can produce system level phase noise and jitter performance akin to individual unit specified performance. This assumes that appropriate synchronization ensemble layout, isolation, and power supply filter techniques were used.
4. All parameters, unless otherwise specified, are at nominal conditions, ie: T=25ºC, Nominal Vcc & Nominal Load.
Fig. 1. Example of SXO connection in the system.

Explanation notes:

- Depicted ensemble in red should be considered as a giant distributed crystal oscillator.
- Individual SXO units are spread throughout the system roughly equidistantly physically.
- All SXOs are connected to the Sync Bus A and Sync Bus B in alternating fashion. Both buses are terminated at the ends. (Loop connection to be investigated)
- The role of the resistors at the SXO Synch OUT terminal is impedance matching
- The system nodes needed Synchronized clocking are fed from one of the buses (if phase synchronization and skew is not important both buses could be used)
- The synchronized clock is tapped off from any point on the bus. If Static phase error is needed to be corrected it runs through correction circuit (delay) into signal conditioning circuit. The number of system nodes can be much greater than the number of SXO units. As long as SXOs are spread equidistantly and within few inches from each other– the number of tap-offs can be as large as practical and not necessarily equal.
Synchronized Crystal Oscillator, General Requirements

AN-ASXOXG-X Series

- Signal conditioning circuit consists of amplifier, frequency multiplier (if system clock frequency is higher than practical for the bus frequency), and logic translator (whatever logic system is using – bus is running essentially clipped sine-wave). Most likely differential translator.
- At that point the clock can be fed directly into a system node, or fan buffered if required.
- Synchronicity:
- All points on the bus are synchronous in frequency and don’t have any noticeable dynamic phase error.
- Static phase error (which is constant for each node) can be corrected if needed. Skew will be very minimal and determined by the skew of fan-out buffer if used
- Redundancy, reliability: Failure of any arbitrary number of individual SXO cannot lead to the system failure. All remaining units will stay synchronous and provide signal on the buses to be tapped off by the system. Of course – no master clock – no single point of failure. No oscillator start-up problem – any with potential problem will get a jump-start from the bus Synch-in signal.
- Signal integrity/Noise: Signal on the bus gets cleaned up by the recursive filtering of each SXO unit. Phase noise (and jitter) on the bus signal is as good as the best SXO in ensemble.